195 research outputs found

    Dynamical fidelity of a solid-state quantum computation

    Full text link
    In this paper we analyze the dynamics in a spin-model of quantum computer. Main attention is paid to the dynamical fidelity (associated with dynamical errors) of an algorithm that allows to create an entangled state for remote qubits. We show that in the regime of selective resonant excitations of qubits there is no any danger of quantum chaos. Moreover, in this regime a modified perturbation theory gives an adequate description of the dynamics of the system. Our approach allows to explicitly describe all peculiarities of the evolution of the system under time-dependent pulses corresponding to a quantum protocol. Specifically, we analyze, both analytically and numerically, how the fidelity decreases in dependence on the model parameters.Comment: 9 pages, 6 figures, submitted to PR

    General-Purpose Parallel Simulator for Quantum Computing

    Full text link
    With current technologies, it seems to be very difficult to implement quantum computers with many qubits. It is therefore of importance to simulate quantum algorithms and circuits on the existing computers. However, for a large-size problem, the simulation often requires more computational power than is available from sequential processing. Therefore, the simulation methods using parallel processing are required. We have developed a general-purpose simulator for quantum computing on the parallel computer (Sun, Enterprise4500). It can deal with up-to 30 qubits. We have performed Shor's factorization and Grover's database search by using the simulator, and we analyzed robustness of the corresponding quantum circuits in the presence of decoherence and operational errors. The corresponding results, statistics and analyses are presented.Comment: 15 pages, 15 figure

    Solid-State Nuclear Spin Quantum Computer Based on Magnetic Resonance Force Microscopy

    Get PDF
    We propose a nuclear spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two- qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1K.Comment: 16 pages, 5 figure

    A Quantum Full Adder for a Scalable Nuclear Spin Quantum Computer

    Get PDF
    We demonstrate a strategy for implementation a quantum full adder in a spin chain quantum computer. As an example, we simulate a quantum full adder in a chain containing 201 spins. Our simulations also demonstrate how one can minimize errors generated by non-resonant effects.Comment: 15 pages RevTex including 2 figure

    Perturbation Theory for Quantum Computation with Large Number of Qubits

    Get PDF
    We describe a new and consistent perturbation theory for solid-state quantum computation with many qubits. The errors in the implementation of simple quantum logic operations caused by non-resonant transitions are estimated. We verify our perturbation approach using exact numerical solution for relatively small (L=10) number of qubits. A preferred range of parameters is found in which the errors in processing quantum information are small. Our results are needed for experimental testing of scalable solid-state quantum computers.Comment: 8 pages RevTex including 2 figure

    Quantum Breaking Time Scaling in the Superdiffusive Dynamics

    Full text link
    We show that the breaking time of quantum-classical correspondence depends on the type of kinetics and the dominant origin of stickiness. For sticky dynamics of quantum kicked rotor, when the hierarchical set of islands corresponds to the accelerator mode, we demonstrate by simulation that the breaking time scales as τ(1/)1/μ\tau_{\hbar} \sim (1/\hbar)^{1/\mu} with the transport exponent μ>1\mu > 1 that corresponds to superdiffusive dynamics. We discuss also other possibilities for the breaking time scaling and transition to the logarithmic one τln(1/)\tau_{\hbar} \sim \ln(1/\hbar) with respect to \hbar

    Dynamical Stability of an Ion in a Linear Trap as a Solid-State Problem of Electron Localization

    Get PDF
    When an ion confined in a linear ion trap interacts with a coherent laser field, the internal degrees of freedom, related to the electron transitions, couple to the vibrational degree of freedom of the ion. As a result of this interaction, quantum dynamics of the vibrational degree of freedom becomes complicated, and in some ranges of parameters even chaotic. We analyze the vibrational ion dynamics using a formal analogy with the solid-state problem of electron localization. In particular, we show how the resonant approximation used in analysis of the ion dynamics, leads to a transition from a two-dimensional (2D) to a one-dimensional problem (1D) of electron localization. The localization length in the solid-state problem is estimated in cases of weak and strong interaction between the cites of the 2D cell by using the methods of resonance perturbation theory, common in analysis of 1D time-dependent dynamical systems.Comment: 18 pages RevTe

    Single-Pulse Preparation of the Uniform Superpositional State used in Quantum Algorithms

    Full text link
    We examine a single-pulse preparation of the uniform superpositional wave function, which includes all basis states, in a spin quantum computer. The effective energy spectrum and the errors generated by this pulse are studied in detail. We show that, in spite of the finite width of the energy spectrum bands, amplitude and phase errors can be made reasonably small.Comment: RevTex, 5 pages, 7 eps figure

    Quantum computation in a Ising spin chain taking into account second neighbor couplings

    Full text link
    We consider the realization of a quantum computer in a chain of nuclear spins coupled by an Ising interaction. Quantum algorithms can be performed with the help of appropriate radio-frequency pulses. In addition to the standard nearest-neighbor Ising coupling, we also allow for a second neighbor coupling. It is shown, how to apply the 2\pi k method in this more general setting, where the additional coupling eventually allows to save a few pulses. We illustrate our results with two numerical simulations: the Shor prime factorization of the number 4 and the teleportation of a qubit along a chain of 3 qubits. In both cases, the optimal Rabi frequency (to suppress non-resonant effects) depends primarily on the strength of the second neighbor interaction.Comment: 19 pages, 6 figure

    Two Qubit Quantum Computing in a Projected Subspace

    Full text link
    A formulation for performing quantum computing in a projected subspace is presented, based on the subdynamical kinetic equation (SKE) for an open quantum system. The eigenvectors of the kinetic equation are shown to remain invariant before and after interaction with the environment. However, the eigenvalues in the projected subspace exhibit a type of phase shift to the evolutionary states. This phase shift does not destroy the decoherence-free (DF) property of the subspace because the associated fidelity is 1. This permits a universal formalism to be presented - the eigenprojectors of the free part of the Hamiltonian for the system and bath may be used to construct a DF projected subspace based on the SKE. To eliminate possible phase or unitary errors induced by the change in the eigenvalues, a cancellation technique is proposed, using the adjustment of the coupling time, and applied to a two qubit computing system. A general criteria for constructing a DF projected subspace from the SKE is discussed. Finally, a proposal for using triangulation to realize a decoherence-free subsystem based on SKE is presented. The concrete formulation for a two-qubit model is given exactly. Our approach is novel and general, and appears applicable to any type of decoherence. Key Words: Quantum Computing, Decoherence, Subspace, Open System PACS number: 03.67.Lx,33.25.+k,.76.60.-kComment: 24 pages. accepted by Phys. Rev.
    corecore